Continuous Optimization for Fields of Experts Denoising Works

Sameer Agarwal and I just uploaded a paper to arχiv.orgContinuous Optimization for Fields of Experts Denoising Works. We show that simple non-linear least-squares is better than sophisticated discrete optimization methods for certain image denoising problems.

I have used these denoising problems as a bechmark and motivation when developing generalized roof duality. But as it turns out, continuous optimization is much better. 🙂

Update: I should add that the source code used for the experiments in available in Ceres; see https://code.google.com/p/ceres-solver/ .

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s